Лекция 3. Легочные объемы и емкости. Оценка ФОЕ методом разведения гелия

Спирометрическое исследование начинается с записи спокойного дыхания. При этом иногда 1-2 мин пациент адаптируется к спирометру (это прежде всего касается спирометров закрытого типа), затем после установления ровного спокойного дыхания включается запись. Ранее запись спокойного дыхания продолжалась 3-5 мин, теперь это время сокращено до полуминуты. На этом этапе измеряются следующие величины (рис. 5):

Дыхательный объем $(\mathcal{A}O)$ (V - Tidal volume) - объем воздуха, который вдыхается и выдыхается за каждый дыхательный акт.

Частота дыхания (4///) (/ - frequency) - число дыхательных движений в 1 мин.

Минутный объем дыхания (MOД) (V - Minute ventilation)- объем, который вентилируется через легкие за 1 мин $MOД = ДO \times YД$.

У взрослого человека ДО составляет около 500 мл, 4Д-16 в 1 мин, а MOД- около 8 л/мин. Необходимо отметить, что величины 4Д и ДО очень индивидуальны.

Резервный объем вдоха (PO_{so}) (IRV - inspiratory reserve volume) - максимально возможный объем, который можно дополнительно довдохнуть после спокойного вдоха. У взрослого человека небольшого роста он составляет около 2 π^1 .

Резервный объем выдоха ($PO_{6ыд}$) (ERV - expiratory reserve volume) - максимального возможный объем, который можно дополнительно выдохнуть после спокойного выдоха. В нашем примере он составляет около 1,5 л,

Жизненная емкость легких (ЖЕЛ) (VC - vital capacity) - максимально возможный объем, который можно выдохнуть после максимально глубокого вдоха ($\mathcal{K}E\mathcal{I}$ выдоха), или максимальный объем, который можно вдохнуть после максимально глубокого выдоха (ЖЕЛ вдоха). Нередко проводят последовательно определение ЖЕЛ вдоха и ЖЕЛ выдоха. Редко у тяжелых прерывистый маневр определения $\mathcal{K}E\mathcal{I}$, сначала проводят определяя $E_{\theta\theta}$, а потом $PO_{\theta\theta\theta}$. Тогда ЖЕЛ определяют как сумму $E_{\theta\theta}$ и $PO_{\theta\theta\theta}$. Эти варианты определения ЖЕЛ представлены на рис. 6. В норме эти величины одинаковые, но при бронхиальной обструкции закрытия бронхов ЖЕЛ выдоха может быть экспираторного меньше, чем $\mathcal{K}E\mathcal{I}$ вдоха. Во всех случаях $\mathcal{K}E\mathcal{I} = PO_{e\partial} + \mathcal{I}O + PO_{ebi}$.

¹ Здесь и далее приводятся условные значения объемов для некоторого абстрактного примера. В реальных условиях у каждого обследуемого эти значения индивидуальны.

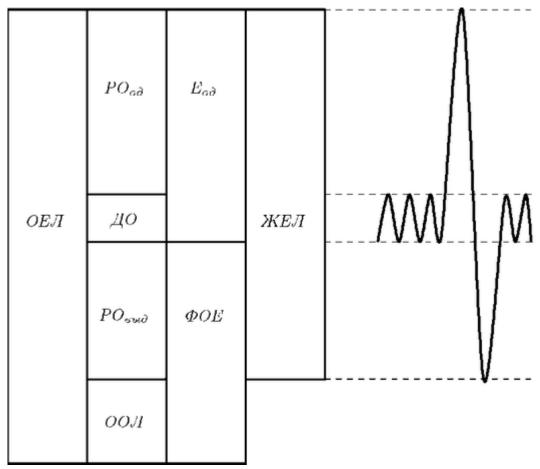


Рис. 5. Схематическое изображение легочных объемов и емкостей

Штриховые линии обозначают (сверху вниз) уровни: максимально глубокого вдоха, спокойного вдоха, спокойного выдоха, максимально глубокого выдоха.

Остаточный объем легких (OOJ) (RV - residual volume)-объем воздуха, остающийся в легких после максимально глубокого выдоха. Этот объем не может быть определен при спирометрии, его измеряют при бодиплетизмографии или конвекционным методом разведения инертного газа (гелия).

Функциональная остаточная емкость легких (ΦOE) (FRC - functional residual capacity) - объем воздуха в легких на глубине спокойного выдоха. $\Phi OE = PO_{\rm Gblo} + OOJI$

Емкость вдоха ($E_{\rm вд}$) (IC - inspiratory capacity)- максимальный объем, который можно вдохнуть после спокойного выдоха. $E_{\rm вд}=\mathcal{A}O+PO_{\rm вд}$. У здорового человека величины $E_{\rm вд}$ и ΦOE примерно равны. При обструкции ΦOE обычно превышает $E_{\rm вд}$. При рестриктивных нарушениях уменьшаются как ΦOE , так и E вд.

Общая емкость легких $(OE\Pi)$ (TLC - total lung capacity) - объем воздуха в легких на глубине максимально глубокого вдоха. Уменьшение $OE\Pi$ - это

основной признак рестриктивного синдрома. При обструкции $OE\Pi$ часто увеличивается за счет увеличения $OO\Pi$. $OE\Pi = \mathcal{K}E\Pi + OO\Pi = \Phi OE + E_{ed}$.

Таким образом, выделяют 4 объема: $\mathcal{L}O$, $PO_{e\partial}$, $PO_{ebi\partial}$, $OO\mathcal{I}$ и 4 емкости: $\mathcal{K}E\mathcal{I}$, $OE\mathcal{I}$, $E_{e\partial}$, ΦOE . Как видно, легочные емкости включают два легочных объема и более. Из них $\mathcal{L}O$, $PO_{e\partial}$, $PO_{ebi\partial}$, $\mathcal{K}E\mathcal{I}$ определяют при спирометрии непосредственно путем выполнения соответствующего маневра.

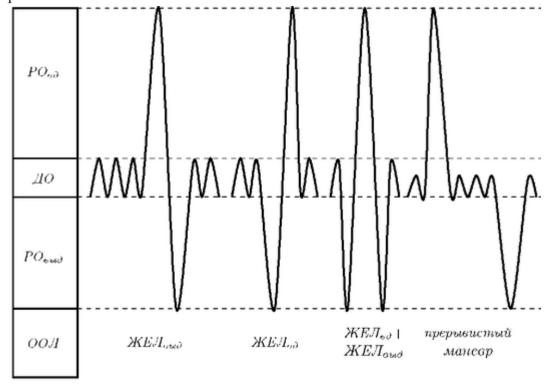
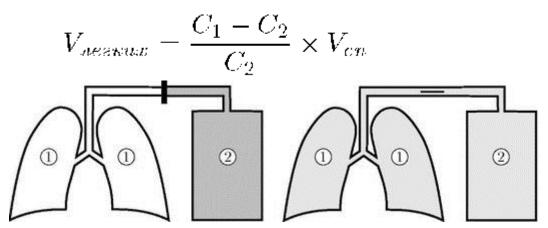



Рис. 6. Различные варианты определения ЖЕЛ

Схема определения величины ООЛ методом разведения гелия

Гелий, обладая малой плотностью, легко проникает во все участки легких, быстро смешиваясь во всем объеме легких, не попадая в кровь, кроме того, он безвреден для организма. На первом этапе емкость спирографа закрытого типа заполняется газовой смесью с небольшим количеством гелия. Газоанализатором измеряется его концентрация - C_1 . Поскольку объем спирометра (Vcn) известен по паспортным данным прибора, то известно количество введенного гелия: $C1 \times V_{cn}$. Далее открывается дыхательный кран, и гелиевая смесь начинает поступать в легкие пациента. Газоанализатор позволяет установить момент, когда концентрация гелия установится на новом уровне - C2. Поскольку гелий не покидает легкие, не поступает в кровь, то количество гелия остается одинаковым как до смешивания, так и после него (рис. 7).

Т.е. $C1x \ V_{cn} = C2x \ (V_{cn} + \ V_{\textit{легких}})$. Из этого выражения вычисляется величина V легких :

Puc. 7. Схема определения ΦOE методом разведения гелия 1 - легкие пациента, 2 - емкость спирометра.

Слева: до открытия крана весь индикаторный газ находится в спирометре; справа: после открытия газа он распределяется равномерно в легких и спирометре.

Поскольку подключение пациента к спирометру проводится на уровне спокойного выдоха, то величина $V_{\textit{легких}}$ будет равна ΦOE . Далее рассчитывают:

$$OOJI = \Phi OE$$
 - PO выд, $OEJI = \mathcal{K}EJI + OOJI$

Информативными являются также соотношения: $OO\mathcal{I}$ / $OE\mathcal{I}$ и ΦOE / $OE\mathcal{I}$.

 ΦOE может быть также измерена методом вымывания азота кислородом. При заполнении емкости спирометра чистым кислородом (в закрытой системе) непрерывно регистрируют концентрацию азота в выдыхаемом газе с помощью азотографа (или масс-спектрометра) с последующим расчетом величины ΦOE . Некоторые приборы позволяют рассчитать ΦOE при регистрации азота в открытой системе.

Альтернативой методу разведения индикаторного газа для определения OOЛ является метод бодиплетизмографии, основанный на законе Бойля-Мариотта.

В норме OOJ составляет 20-35% от OEJ в зависимости от возраста (у молодых лиц он меньше, с возрастом OOЛ увеличивается в связи с развитием возрастной эмфиземы легких). При выраженной обструкции характерно увеличение OOЛ, увеличение ΦOE , уменьшение $POвы \partial$. При тяжелой обструкции уменьшается и ЖЕЛ, сначала преимущественно счет снижения *РОвыд* (при выраженной эмфиземе возможно уменьшение и емкости вдоха). При рестрикции отмечается уменьшение ОЕЛ, при этом уменьшаются все составляющие ее объемы, хотя и в разной степени. При смешанных нарушениях уменьшается и *ОЕЛ*. и изменяется структура *ОЕЛ* по аналогии с обструктивным синдромом.

Соотношение $\Phi OE/OEЛ$ в норме у молодых людей составляет около 50%, отражая то, что уровень спокойного выдоха является уровнем равновесия эластических сил аппарата дыхания: легочной паренхимы, которая стремится к сжатию, и грудной клетки, которая стремится к расширению. Конкретное значение соотношения $\Phi OE/OEЛ$ у лиц разного возраста можно найти в специальных таблицах. Уровень спокойного выдоха соответствует равновесию этих сил, когда ΦOE равна емкости вдоха.

На рис. 8 представлена схема изменений структуры *ОЕЛ* в норме, при обструкции (например, ХОБЛ), рестриктивных и смешанных нарушениях.

При различных вариантах нарушений внешнего дыхания отмечаются следующие изменения объемных показателей:

- 1. При обструкции внегрудных дыхательных путей изменения напоминают таковые при рестриктивных нарушениях: пропорциональное уменьшение всех легочных объемов.
- 2. При обструкции центральных отделов бронхиального дерева увеличиваются ООЛ и соотношение ООЛ /ОЕЛ при малом изменении ОЕЛ. ЖЕЛ может уменьшиться преимущественно за счет $PO_{выд}$.
- 3. При дистальной обструкции характерно еще более значимое увеличение ОЕЛ, ООЛ, ООЛ/ ОЕЛ. ЖЕЛ может уменьшаться за счет $PO_{выд}$. При выраженной дистальной обструкции, в частности, при эмфиземе легких, возможно значительное уменьшение $\mathcal{K}E\mathcal{I}$ при резком снижении $PO_{выд}$, а также и снижения емкости вдоха. При этом наибольшую часть ОЕЛ составляет $OO\mathcal{I}$. При всех трех вариантах уменьшаются $O\Phi B \setminus \mathbf{I}$ и скоростные показатели кривой форсированного выдоха.
- 4. При рестриктивных нарушениях основным показателем является уменьшение ОЕЛ и всех ее составляющих, хотя часто и не в равной степени. Уменьшение только ЖЕЛ не может служить однозначным признаком рестрикции, так как при выраженных обструктивных нарушениях ЖЕЛ также уменьшается.
- 5. Смешанные нарушения могут быть выявлены только при анализе структуры OEЛ. При этом будет уменьшаться OEЛ и изменяться ее структура с уменьшением POвы d и увеличением OOЛ. Схематичное представление изменений легочных объемных показателей при обструктивных и рестриктивных нарушениях представлено в табл. 2.

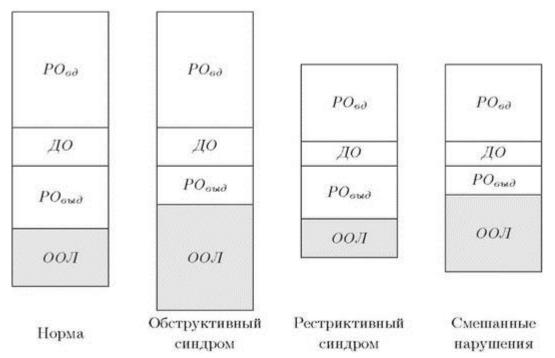


Рис. 8. Схема изменений структуры ОЕЛ при обструкции, рестрикции и смешанных нарушениях

Таблица 2. Типичные изменения спирометрических показателей при обструктивных и рестриктивных нарушениях

Показатель	Синд	дром
Показатель	Обструктивный	Рестриктивный
OEJI	$N \uparrow$	+
ЖЕЛ	$N\downarrow$	↓
$PO_{\bullet \partial}$	N	↓
PO_{oud}	\downarrow	↓
$E_{\alpha d}$	N	↓
ΦOE	$N \uparrow$	+
ООЛ	1	$N\downarrow$
ООЛ/ОЕЛ	↑	N
$O\Phi B_1$	\downarrow	↓
$O\Phi B_1/\mathcal{K}EJI$	\downarrow	$N \uparrow$
$O\Phi B_1/\Phi \mathcal{K} E \mathcal{J}$	↓	$N\uparrow$
ДО	$N\uparrow$	$N\downarrow$
4/1	$N\uparrow$	$N \uparrow$
MBJI	↓	↓

N - показатель не меняется или меняется незначительно, стрелки указывают на уменьшение или увеличение показателя.

Ha рис. представлена возрастная динамика показателей ОЕЛ, ООЛ, ЖЕЛ. После 20 лет ОЕЛ и ЖЕЛ постепенно снижаются, а $OO\Pi$ и ΦOE увеличиваются. C возрастом увеличивается соотношение ООЛ/ОЕЛ, что отражает развитие возрастной эмфиземы легких.

При ХОБЛ характерно изменение соотношения легочных объемов, отражающих обструктивные нарушения и развитие эмфиземы легких: увеличение ООЛ, $\Phi O E$ и $O E \mathcal{J} I$. При физической нагрузке значительных колебаний давления в грудной клетке происходит нарастание экспираторного закрытия бронхов, мелкие бронхи играют роль клапана, большее происходит «накачка» воздуха легкие: еще увеличение ООЛ, ФОЕ и ОЕЛ. Улучшение бронхиальной проходимости под действием бронхолитических препаратов уменьшает указанную тенденцию.

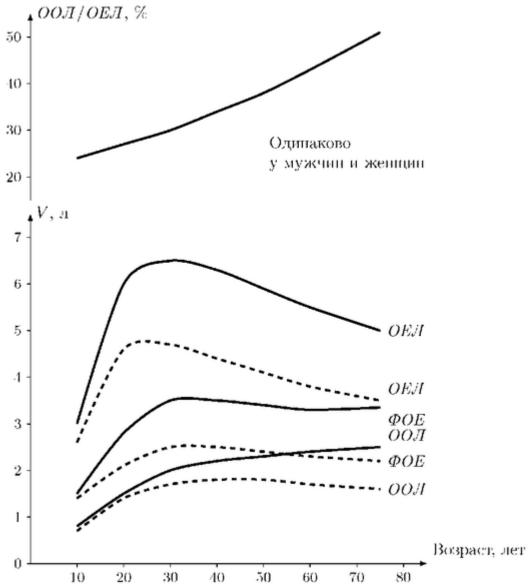


Рис. 9. Возрастная динамика показателей легочных объемов (по Neetham) Сплошная линия - мужчины, пунктирная - женщины.

PO_{ad}	PO_{ad}	PO_{ed}	PO_{ed}
ДО	ДО	ДО	ДО
PO _{ened}	PO_{oud}	PO_{ond}	РО _{вид}
оол	оол	ООЛ	ООЛ
Горма	Обструктивный синдром	Рестриктивный синдром	Смешанные нарушения